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In this paper, natural-convection heat transfer in an inclined porous layer boarded by a 
wall with finite thickness and conductivity is studied both analytically and numerically. A 
constant heat flux is applied for heating and cooling the long side walls of the rectangular 
enclosure while the other two walls are insulated. Several different f low models for porous 
media are considered, such as Brinkman-extended Darcy and Forschheimer-Brinkman- 
extended Darcy models. The governing equations, derived from the Brinkman-extended 
Darcy formulation, are solved analytically, in the limit of a thin system, using the parallel 
f low approximation. Results are obtained in terms of an overall Nusselt number as a 
function of Rayleigh and Darcy numbers, angle of inclination of the system, and thickness 
and conductivity of the bordering wall. The analytical solution is compared with the 
numerical results obtained by solving the complete system of governing equations. An 
analysis is made on the proper choice of parameters that can describe the criteria for the 
range of validity of Brinkman-extended Darcy's law in this type of configuration. 
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I n t r o d u c t i o n  

Natural convection in porous media has been studied 
extensively over the past 20 years or so due to several important 
geophysical and engineering applications. These include energy 
conservation in buildings, water movements in geothermal 
reservoirs, and solar collector applications. An excellent review 
of existing experimental and numerical results has been 
presented by Combarnous and Bories (1975) and Cheng (1978), 
among others. 

Most analytical studies for natural convection in porous 
media are based on Darcy's law. The most common reason for 
the wide use of a Darcian formulation is its simplicity. However, 
the few available experimental studies of heat transfer in 
vertical porous cavities (see, for instance, Klarsfeld 1970; Bories 
and Combarnous 1973; Seki et al. 1978) have never agreed with 
the theoretical results obtained with the Darcy model. 
Extensive efforts have thus been made to include the viscous 
diffusion and inertia terms in the governing equations in recent 
studies of natural convection in porous media. 

To account for the boundary effect, which may become 
important in some situations, Brinkman's extension of Darcy's 
law must be used. The Brinkman equation removes some of 
the deficiencies of Darcy's law, since it can satisfy all the 
boundary conditions at a solid surface or a fluid interface. Chan 
et al. (1970) used the Brinkman model to study natural 
convection in a rectangular porous box that is differentially 
heated in the horizontal direction. Their numerical computa- 
tions indicate that when the Darcy number based on the width 
of the enclosure is less than 10 -3 , the results are in good 
agreement with Darcy's law. A boundary-layer analysis for 
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natural convection in a vertical porous layer was performed by 
Tong and Subramanian (1985). The boundary-layer equations, 
derived from the Brinkman model, were solved using the 
modified Oseen method (see, for instance, Weber 1975). It was 
found that the pure Darcy analysis is applicable only when 
R Da/A < 10 -4. The same problem was considered numeric- 
ally by Lauriat and Prasad (1987). It was shown that for a fixed 
modified Rayleigh number, the Nusselt number decreases with 
an increase in the Darcy number, the reduction being larger at 
higher values of the Rayleigh number. Similar results have been 
obtained both theoretically and numerically by Vasseur et al. 
(1987a) for a vertical cavity heated and cooled with uniform 
heat fluxes along its vertical side walls. Natural convection in 
a shallow porous cavity has been studied analytically by Sen 
(1987) and Vasseur et al. (1989a), respectively, for various 
thermal and hydrodynamic boundary conditions. For Darcy 
numbers higher than 10 -4, the resulting Nusselt numbers were 
found to be significantly smaller than the values predicted by 
Darcy's law. 

It is now well known that the Darcy flow model breaks down 
when the inertia resistance becomes comparable to the Darcy 
viscous resistance. Forschheimer (1901) proposed a quadratic 
term in Darcian velocity to describe the inertia effects. 
Poulikakos and Bejan (1985a, 1985b) investigated the inertia 
effects through the inclusion of the Forschheimer's extension. 
Beckerman et al. (1986) have shown that at high Darcy 
numbers the inertia and viscous terms must be included 
simultaneously to obtain realistic predictions of the heat 
transfer. Recently, Lauriat and Prasad (1987) used Brinkman's 
and Forschheimer's extensions of Darcy's law to study 
non-Darcian natural convection in a differentially heated 
vertical cavity. It was found that a porous medium can 
transport more energy than a saturating fluid alone if the 
porous matrix is highly permeable and the thermal 
conductivity of solid particles is greater than that for the fluid. 

The purpose of the present work is to study the 
natural-convection heat transfer in an inclined porous layer 
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boarded by a solid wall of finite thickness and conductivity, 
and heated from the sides by a constant heat flux. This type of 
configuration is of interest in several engineering applications. 
These include building-insulation layers, the design of solar 
collectors, the solidification process in porous media, etc. Most 
of the studies available in the literature on natural convection 
in porous-media enclosures are concerned with the numerical 
study of a vertical layer heated isothermally from the sides. 
However, in many applications the isothermal-walls model is 
clearly inadequate. For instance, the temperature of the great 
majority of walls encountered in architectural and solar 
applications is not maintained uniform; rather, it is the 
consequence of the heat flux imposed to the wall. Also, the 
present investigation takes into account the effect of inclination 
of the system and the influence of a boarding wall. These two 
parameters are important in many practical situations. 

Our analysis proceeds as follows. First, we derive a 
closed-form analytical solution valid in the limit of a shallow 
system (A >> 1). The porous medium is modeled using the 
Brinkman-extended Darcy equations. Our mathematical 
treatment parallels that of Vasseur et al. (1987b, 1989a) who 
have considered the case of an inclined porous layer in the 
absence of a boarding wall. This is followed by a numerical 
solution of the full governing equations, which include both 
the Forschheimer and Brinkman modifications. The relative 
importance of inertia and viscous forces is discussed. The 
numerical results are used to establish criteria for deviation 
from the Darcy and Brinkman-extended Darcy solutions. 

F o r m u l a t i o n  o f  t h e  p r o b l e m  

The physical situation and coordinate system is depicted in 
Figure 1. The enclosure of height H' and thickness L' is boarded 
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Figure 1 Flow configuration 
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N o t a t i o n  

A Aspect ratio = H'/L' 
b' Matrix structure property associated with the 

Forschheimer term, m 
C Dimensionless temperature gradient along 

y-direction 
c Specific heat at constant pressure, J. kg -  i .  K -  x 
Da Darcy number = K'/L '2 
Fs Forschheimer number = b'/L' 
g Acceleration due to gravity, m. s-2 
H'  Cavity height, m 
K' Permeability of porous matrix, m 2 
kf Thermal conductivity of fluid, W- m -  1. K -  1 
kp Thermal conductivity of porous medium, 

W . m - I  .K-1  
k, Thermal conductivity of solid wall, W. m -  1. K -  1 
L' Cavity width, m 
Nu Nusselt number = ATdAT 
p Dimensionless pressure = p'K/l~ap 
Pr Fluid Prandtl number = v/af 
Pr* Porous Prandtl number = v/a. 
q' Constant heat flux, = W . m - ~ r  
Ra Fluid Rayleigh number = gflq'L'4/vafkf 
R Darcy-Rayleigh number = gflK'L'2q'/vapkv 
T~ Reference temperature at x' = y' = 0, K 
T Dimensionless temperature = (T' - T'o)/AT' 
u, v Dimensionless fluid velocity components = u'L/ap, 

v't/otp 
x, y Dimensionless Cartesian coordinates = x'/L', y'/L' 

Greek 

Otf 

AT' 
AT 

8 

0 
K 

2 

~eff  

V 

P 

symbols 

Thermal diffusivity of fluid = kf/(pc)t, m 2" s-1 
Thermal diffusivity of porous medium = kp/(pc)f, 
m 2 "s- l 
Isobaric coefficient of thermal expansion of fluid, K -  1 

Temperature difference = q'L'/kp, K 
Wall-to-wall dimensionless temperature difference 
T(--r//2, 0) -- T(1 - ~//2, 0) 
Porosity 
Dimensionless thickness of porous layer = )7'/L' 
Dimensionless temperature 
Relative conductivity = k,/kp 
Relative viscosity =/lar//~ 
Dynamic viscosity of fluid, kg. m- 1. s -  1 
Apparent dynamic viscosity for Brinkman's model, 
k g . m - l . s - I  
Kinematic viscosity of fluid, m 2. s -  1 
Fluid density, kg- rn- 3 
Angle of inclination of the enclosure 
Dimensionless stream function = ~b'/ap 

Subscripts 

f Fluid 
p Fluid saturated porous medium 
s Solid 
c Pure conduction 

Superscript 

Dimensional variables 
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by a solid wall of extension (L' - t/'), and the system is tilted 
at an angle q~ with respect to the horizontal. The two end walls 
are insulated, while a uniform heat flux q' is applied along both 
side walls. The thermophysical properties of the fluid are 
assumed constant, except for the density in the buoyancy term 
in the momentum equations. The porous medium is considered 
homogeneous and isotropic and is saturated with a fluid that 
is in local thermodynamic equilibrium with the solid matrix. 

Assuming that the flow is steady and two-dimensional (2-D), 
the governing equations, in terms of the superficial (Darcian) 
velocity, can be written as follows (Beckerman et al. 1986): 

~N'  OV r 

- - + - - = 0  (1) ax' ,~yr 

8p' u' 
~ X  p = #effV 2u' --  ~ (~/ + pb'[ 17'1) -- pgfl(T' -- To) cos • (2) 

- - =  - -  D Z 
ap '  ]A¢ffVZv ' K' (p + pb'117' 1) - pgfl(T' - To) sin • (3) 
t?y' 

[ (pc)f U' - -  + V' = k p V  2T' 
Ox' ay' J 

(4) 

where [ 171 = , , ~  + v '2 and b' is the inertial coefficient. All the 
other symbols in the above equations are defined in the 
nomenclature. 

Equations 1--4 may be rendered dimensionless by employing 
the following scales: L' for length,/aaffK' for pressure, %/L' for 
velocity and q'L'/kp for temperature. We obtain 

Ou av 
- -  + - -  = o (5) 
#x Oy 

a p = 2 Da V2u - u(1 + A[171) - R T  cos • (6) 
ax 

d p = 2 Da VZv - v(1 + AI171) + R T s i n  @ (7) 
dy 

aT  OT 
u - -  + v - -  = V2T (8) 

8X 8y 

where I VI = x / ~  + v 2 and A = Fs/Pr*. 
The boundary  conditions are given in dimensionless form as 

u = v = 0 on all solid boundaries (9a) 

aT  
y = +_A/2 - -  = 0, (9b) 

#y 

OT 
x = - 1//2, 1 - ~//2 - -  = 1, x -  ~ (9c) 

dx 

aT  - 3_xT + x = ~//2 T + = T - ;  ~-x = • (9d) 

The heat transfer across the system can be expressed in term 
of a Nusselt number  at y = 0, defined as 

Ar~ 
Nu - (10) 

AT 

where AT is the dimensionless temperature difference across 
the section, and ATe is the corresponding temperature difference 
for pure conduction (AT~ = 1 + (1 - ~/Xr-1 _ 1)). 

N u m e r i c a l  s o l u t i o n  

The numerical solution of governing equations 5-8 is obtained 
using the SIMPLER algorithm (Patankar  1980). The 
control-volume formulation used in the algorithm ensures 
continuity of the convective and diffusive fluxes as well as 
overall momentum and energy conservation. The mesh size 
required for sufficient numerical accuracy depends mainly on 
the Rayleigh and Darcy numbers. A mesh of 25 x 25 to 75 x 75 
nodal points ensured independence of solution on the grid. The 
nodal points were uniformly distributed in the y-direction, 
while the distribution along the x-direction was slightly skewed 
to obtain a greater concentration of points near the heated and 
cooled boundaries. The convergence criteria were based on the 
corrected pressure field. When the corrected terms were small 
enough so that no difference existed between the pressure field 
before and after correction (Eb u < 10-4), the computat ion was 
stopped. For  small Rayleigh numbers, the number  of iterations 
was about  50. For  larger R, the solution from the smaller R 
was used to initialize the computat ion so the number  of 
iterations was reduced considerably. Besides the usual control, 
the accuracy of computat ions was controlled using the energy 
conservation within the system. 

A test of the accuracy of the present numerical algorithm 
was obtained by comparing the results to those reported in the 
literature for the limiting case of a fully porous vertical 
enclosure with the vertical walls held at different temperatures 
and the connecting horizontal walls maintained adiabatic. 
Tables la  and lb  show that the present numerical model is in 
good agreement with the Darcy-Br inkman and the Darcy-  
Brinkman-Forschheimer solutions reported in the literature by 
various authors. For  instance, Table lb  indicates that for 
R = 104, Da = 10 -4  and Pr = 1, the present solution for the 

Darcy-Brinkman-Forschheimer  model ( b ' / x / ~  = 0.55) agrees 
to within 0.5 percent and 3 percent with the results reported 
by Lauriat and Prasad (1989) and Beckerman et al. (1986), 
respectively. For  this situation the strength of convection is 
extremely high ( N u -  ~ 18) and a mesh of 112 x 112 was 
necessary to ensure independence of the solution with respect 
to the number  of grid points. Also, some of the cases considered 
by Vasseur et al. (1987a) for the case of a vertical Brinkman 
layer heated from the sides by constant  heat fluxes were 
reproduced. In general it was found that essentially identical 

Table  l a  Nusselt number wi th  Brinkman-extended Darcy flow 
model (A = 1.0) 

Equations 9b and 9c result from the thermal boundary  
conditions applied on the enclosure, while Equation 9d express 
the continuity of temperature and heat flux at the interface 
between the solid wall and the porous matrix. 

From the dimensionless equations (Equations 5-9), it is seen 
that the present problem is governed by height parameters, 
namely R, Da, A, 2, x, r/, A, and ~. However, in the present 
study, the value of #af in Brinkman's  extension is taken, as a 
first approximation, equal to p (i.e., 2 = 1). 

R Da Pr Present 

Ettefagh Lauriat Beckerman 
et al. et al. et al. 

(1991)  (1989)  (1986)  

104 10 -1 1.0 4.69 - -  4.68 4.72 
104 10 1 10-2 4.69 - -  4.68 4,72 
104. 10 -4. 1.0 25.42 - -  25.70 24.97 
104 10 -4 10 -2 25.42 - -  25.70 24.97 
103 10 -5 1.0 12.42 12.64 - -  - -  
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Table l b  Nusselt number with Forschheimer-Brinkman-extended Darcy flow model 
(A = 1.0) 

Ettefagh et al. Lauriat et al. Beckerman et al. 
R Da Fs/Pr* Present (1991 ) (1989) (1986) 

104 10 -1 1.74 x 1 0  -1  4.39 
104 10 -1 1.74 x 101 1.94 - -  
104 10 -4 5.5 x 10 -3 18.49 
104 10 -4 5.5 X I0  -1 6.11 
500 0 0 9.02 8.98 
500 0 10 -4 8.93 8.92 
500 0 5 x 10 -4 8.65 8.67 
500 0 I 0 -s 8.46 8.44 

4.36 4.39 
1.94 1.94 

18.40 20.59 
6.19 6.02 

flow and temperature patterns as well as the average heat 
transfer were obtained. For instance, when R = 500 and 
Da = 10 -4, an overall Nusselt number of 5.386 was obtained 
in the present study, while that reported by Vasseur et al. 
(1987a) was 5.398. 

With thermal boundary conditions of uniform heating, the 
convective motion becomes independent of aspect ratio A for 
large aspect ratios (Vasseur et al. 1987b). Other numerical tests 
using various aspect ratios A were done while other conditions, 
including the mesh size, were maintained constant. It was found 
that Nu converges very fast to an asymptotic value when A > 4. 
For  this reason, all the numerical results presented here were 
obtained for A = 4. 

A p p r o x i m a t e  a n a l y t i c a l  s o l u t i o n  

In this section an approximate solution, valid for the 
Brinkman-extended Darcy regime (Fs = 0), is presented for 
the case of a long shallow system (A >> 1). In this limit, as 
discussed in detail by Cormack et al. (1974), Walker and Homsy 
(1978), Vasseur et al. (1987a, 1987b, 1989a, 1989b), and other 
authors, the flow velocity in the central part of the cavity can 
be assumed to be parallel in the y-direction. As a result, the 
flow and temperature fields must be of the following form: 

u(x, y) = 0; v(x, y) = v(x) (11) 

T(x ,  y) = Cy  + O(x) (12) 

where C is the unknown but constant temperature gradient in 
the y-direction. 

Eliminating the pressure from Equations 6 and 7 in the usual 
way and introducing the stream function if, it is found that the 
governing equations become 

V20 = Da V40 - \-~-x sin • + O--y cos • (13) 

V2 T ~ dT d~, 8T (14) 
~y ax dx dy 

aq, aq, 
u = - - ,  v = - - -  (15) 

Oy Ox 

Substituting Equations 11 and 12 into Equations 13 and 14, 
one obtains, respectively, 

d 4 v  1 d2v R C  
I- - -  v sin • = 0 (16) 

dx 4 Da dx  2 Da 

and 

d20 
- -  = C v  (17) 
dx  2 

Solutions of Equations 16 and 17 satisfying the boundary 
conditions given by Equations (9) are 

v(x) = B(sinh ax cos bx - % cosh ax sin bx) (18) 

T = Cy  + Bflo(% sinh ax  cos bx  + cosh ax  sin bx) 

v(x) 
+ - -  C x  cot @ (19) 

2R sin 
where 

~, = x / 4 R C  Da sin @, 

f l =  N/7 2 - -  1, 

y +  1 
a = X / 4 ~  a 

b =  4Da  

fl ?(1 + C cot *) 
flo 2R sin ~ ' B - 2DC Da 

% = tanh a t /cot  be 
2 2 

D = (a + %b) cosh at/ b~/ - -  cos - -  
2 2 

+ (b - %a) sinh m/sin br/ 
2 2 

E = % sinh a~/ br/ m/ b~/ - -  cos - -  + cosh - -  sin - -  
2 2 2 2 

(20) 

/ /  

Q = B f l o E -  2x  (1 + x C  cot ~) 

The temperature distribution within the solid boarding wall 
is obtained by solving the Laplace equation V2T = 0, with 
appropriate boundary conditions (Equations 9c and 9d), as 

X 
T = Cy  + -  + Q (21) 

K 

The temperature fields, Equations 19 and 21, are only valid 
in the core region of the cavity and, consequently, are not 
required to satisfy the thermal boundary conditions at each 
end of the cavity (Equation 9b). However, these boundary 
conditions can be indirectly satisfied by matching the core 
solution with the end regions through the evaluation of the 
temperature gradient C in the y-direction. Following Bejan 
(1983), the value of C is obtained by imposing an energy flux 
condition at the end regions of the enclosure. For  the present 
problem, it may be shown that at any y, 

1 (n/2 
C - o(x)O(x)dx (22) 

r /+  (1 -- r/)r .J -./2 
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Substituting Equations 18 and 19 into Equation 22 and 
integrating yields 

B 2 
- -  [(1 - -  a~)F + 2 ~ o G  + (1 + c¢~)n + 2r/~o( fl - -  ~o)]  
8 R C  sin 

where 

fl~- 

B c o t ~  Dr/ b 2 E + x(1 - r/) + r /=  0 (23) 
+ a 2 + b 2 a 2 + 

4 D a  2 

7 

4 Da 2 

- -  (a 3 - 3ab 2) 

f12 - -  ( 332b - -  b3) 
Y 

F = fll sinh ar/cos br /+ f12 cosh ar/sin br/ 

G = f12 sinh at/cos b r / -  fll cosh ar/sin br/ 

sinh at/ sin br/ 
H = r /  + 

a b 

The temperature gradient C can be obtained for any 
combination of the controlling parameters R, Da, and • by 
numerically solving the above transcendental equation. 

From Equations 10, 19, and 21, the Nusselt number is given 
by 

K 
Nu - - -  (24) 

1 + 2~cQ 

R e s u l t s  a n d  d i s c u s s i o n  

In this section, we present some representative results to 
illustrate the effects of the various controlling parameters. First, 
the case of an inclined single layer of porous medium (r/= 1) 
will be examined. The importance of the non-Darcian effects 
on the heat transfer will be discussed. Next, we will consider 
the case of a porous layer of extension r/, boarded by a solid 
partition thickness (1 - r/) with finite conductivity. 

Case o f  an inc l ined single layer o f  porous med ium 
( r / =  1 )  

Typical numerical results are presented in Figures 2a-2e for 
the case of a vertical porous layer (~ = 90°). Figure 2a, with 
R = 102, Fs = 0, and Da = 10 -s ,  represents the streamlines 

and isotherms of an asymptotic flow regime. At higher Rayleigh 
numbers the evolution of the flow structure towards the boun- 
dary-layer regime can be observed from Figures 2b and 2c, 
corresponding to R = 5 x 102 and 103, respectively. The devel- 
opment of the boundary-layer flow regime with an increasing 
R is clearly illustrated by the increasing steepness of velocity 
and temperature profiles near the walls, as well as the formation 
of a plateau in the core region of the two fluid layers. The effects 
of Darcy number Da can be seen by comparing Figures 2c and 
2d, corresponding to Da = 10 -5 and 10 -3, respectively. It is 
seen that, as the porosity of the solid matrix (i.e., Da) is 
increased, the streamlines become relatively more and more 
sparsely spaced near the solid boundaries. This is due to the 
fact that the viscous term (Brinkman) becomes gradually more 
important and slows down the fluid in the neighborhood of the 
walls. Finally, the effects of the inertia (Fs) are illustrated in 
Figures 2c and 2e with R = 103, Da = 10-5, and Fs = 0 and 
10 - t ,  respectively. It is observed that the flow regime has 
reverted from the boundary layer to the asymptotic regime with 
an increase in Fs. 

The Nusselt number for a vertical cavity (~ = 90°), as pre- 
dicted by the Darcy-Brinkman model, is plotted in Figure 3 
against R for various Da. In the same figure, the analytical 
solution obtained by Vasseur et al. (1987b), on the basis of 
Darcy's model, is shown as a dotted line. When Da > 10 -4, 
Darcy's law overpredicts the heat transfer across the enclosure 
due to the neglect of the boundary effects. This is expected 
since, due to the viscous forces exerted near the solid wall 
boundaries, Brinkman's model provides a lower flow circula- 
tion, which causes less energy to be carried away near the 
thermally active walls, thus causing a lower Nusselt number. 
For a given value of Da, the deviation from Darcy's model 
increases as R becomes larger. The good agreement between 
the numerical and analytical results of Figure 3 is noted. 

Figures 4 and 5 illustrate the combined effects of Brinkman 
and Forschheimer terms on the Nusselt number through a 
vertical cavity. Both Darcy and Darcy-Brinkman's solutions 
are depicted on the graphs for comparison purpose. The results 
presented in Figure 4 were obtained for Da = 10 -3. It is seen 
that, at a fixed R, the inclusion of the Brinkman-Forschheimer 
terms in the equation of motion results in lower heat transfer 
rates than the Darcy solution. As R is increased, the differences 
between the Darcy and Darcy-Brinkman-Forschheimer solu- 
tions become more important. This is expected, since the effects 
of viscous diffusion and inertia become increasingly important 
as the flow circulation is enhanced. For a given Rayleigh 
number R = 103, Figure 5 illustrates the influence of the Darcy 
number on the non-Darcian effects. Figure 5 clearly shows that 

a b 

N 

N 

N 

C d 

x i  
\ ] 

\ _ 

e 

Figure 2 Numerical  solutions for the f low and temperature fields, respectively, for a vertical enclosure ( ~  = 90°) .  (a) R = 102, Fs = 0, 
Da = 10 - 5  , ULmax = 2 .350;  (b) R =  5 x 102, Fs = 0, Da = 10 -s,  ~rnax = 3 .586;  (c) R = 103, FS = 0, Da = 10 -s,  ~max = 4 .229;  (d) R = 103, 
FS = 0, Da = 10 -3 ,  ~max = 4.101 ; and (e) R = 10  3, Fs = 10  -1 ,  Da = 10 -s,  ~r~ax = 3 .506  
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so 
Numerical U 

Da ~ ooluUon ....... 
p . / "  

.4 - . -  C~'Vsl .w . . / " j  
103 • _ _  Bdl~rnan'slaw / . / ' /A t  ~.~ 
10 ~ . . / ~ V "  ~ ~:~ 
10 a • , , . ~ , ' ~  . / "  1o 1o, o 

N u 
10  o 

1 

1 0  o 10  ~ 10  ~ 1 0  3 10  4 

R 

Figure 3 Variation of the Nusselt number versus the Rayleigh 
number for the Darcy-Br inkman model, * = 90 °, and r / =  1 

20 N U n l M I r . , l l  ~ . / "  

lS Analytlcal mutlon .,"" l 
I 

. . . .  Dlrcy's law ,..." 
10 0 * _ _  Bdnkman' ,  law / ' //" ~ " ~ "  : I  

10"3 0 ,,/'/" ~ - ,  ,'aw"" I 

lO"1 " I / ' ~ - ~ ' -  

" 4 " ~ ' / " :  S ~ t  ! ~ "  . . . . . . . .  i . . . . . . . .  
/ . / ' / ~  

1 

lO o l o l  lO ~ lO ~ lO 4 

R 

Figure 4 Effect of inertia on the Nusselt number and comparison 
wi th  Darcy and Darcy-Br inkman solutions, ( I)= 90 °, Da = 10 -3, 
and r / =  1 

10 
NumorleJI rmultl 

A ~ t U e ~  t~k~non 
8 ~ - . -  . . . .  o a m y ' =  ~ o • 

. . . . . . . .  ~ . . . . . .  "~t,,~,~ ~ Brlnkman'l law 10 .3 
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2 
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Figure 5 Effect of the Darcy number on the Nusselt number and 
comparison wi th  Darcy, Darcy-Br inkman and Darcy-Br inkman-  
Forschheimer solutions, d) = 90 °, R = 103, and r / =  1 
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4 

for Darcy numbers less than Da = 10 -6, there are no variations 
between the Nusselt number obtained from Darcy's law and 
the corresponding ones computed by the Brinkman-extended 
Darcy model. However, for these relatively low values of Da, 
the inertia effects are important, and utilization of Darcy flow 
would overpredict the cavity Nusselt number considerably. 

Thus when Da = 10 -6, Darcy's solution overpredicts the heat 
transfer by approximately 14 percent when A = 10 -2 and by 
38 percent when A = 10-~. As Da is increased, the viscous 
effects become more important and slow down the buoyancy- 
induced flow inside the cavity, resulting in a decreasing heat 
transfer rate. For  this situation, the inertial effects are relatively 
less important, and they become negligible when Da > 10-~, 
for which the Darcy-Brinkman-Forschheimer model reduces 
to the Brinkman-extended Darcy flow model. 

Figure 6 presents the results obtained for Nu as a function 
of the angle of inclination • for R = 103 and Da = 10- a. The 
orientation angle • is seen to have a dominant effect on the 
heat transfer rate. As the angle of inclination • approaches 
180 °, the Nusselt number tends toward unity, since the situa- 
tion corresponds to the case of a cavity heated from the top, 
which causes no convection since the density gradient is stable. 
The Nusselt number increases with decreasing ~, passes 
through a peak, and then begins to decrease. The peak in 
Nusselt number occurs at about 60 ° for Darcy's law, but at 
about 50 ° for the Brinkman-extended Darcy model. With the 
Darcy-Brinkman-Forschheimer model, the peak in Nu shifts 
from about 40 ° to 60 ° as the parameter A is increased from 
10 -3 to 10 -~. As expected, the non-Darcian effects are found 
to be more important when the flow circulation within the 
cavity is strong, i.e., for 30 ° _< • < 90 °. 

Case o f  a p o r o u s  layer boa rded  b y  a so l id  waft  

We consider now the case of a vertical ((I) = 90 °) porous layer 
extension ~/, boarded by a solid wall of thickness ( 1 -  r/). 
Figure 7 shows the streamline and isotherm contour plots at 
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Figure 6 Effect of incl ination angle on the Nusselt number and 
comparison wi th  Darcy, Darcy-Br inkman, and Darcy-Br inkman-  
Forschheimer solutions, R = 103, Da = 10 -3, and t / =  1 
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Figure 7 Numerical solut ion for the f low and temperature fields, 
respectively, for a vertical enclosure ((I) = 90 °) wi th R = 5 x 102, 
r / - -0 .9 ,  D a = 1 0  -3, A = 0 ,  and (a) x = 0 . 5 ,  u /max=3.379;  (b) 
K = 2.0, u/max = 3.579; and (c) x = 10.0, U/max = 4.620 
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R = 5 x 1 0  2 for a vertical porous layer (Da = 10-3, A = 0) of 
extension r /=  0.9 boarded by a solid slab for x = 0.5, 2.0, and 
10.0. The corresponding maximum stream function values are 
3.379 for K = 0.5, 3.579 for x = 2.0, and 4.620 for x = 10.0. Thus 
the strength of circulation is increased with increasing x. The 
resulting heat transfer through the system, as predicted by 
Equations 23 and 24, is presented in Figure 8 as a function of 
R and x. Verification of the results of analysis by numerical 
computation is also indicated on the graph. Figure 8 shows 
that, for a given value of R, the Nusselt number is enhanced 
as x is made larger. This is expected, since for x << 1 the solid 
slab behaves as an insulating plate such that Nu ~ 1. As x (i.e., 
the relative conductivity of the solid wall) increases, the convec- 
tion and the resulting heat transfer within the porous layer are 
both enhanced. It must be mentioned that the limit x very large 
corresponds to the case of a porous layer boarded by an 
isothermal wall of finite thickness. The thermal boundary 
conditions applied on the porous layer are thus a constant heat 
flux on one side and an isothermal wall on the other side. For  
this situation the present theory is inapplicable, since there is 
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no reason to expect that the resulting flow field, within the s _ _  Analyll~ eoluUon 
porous layer, should be parallel. For  this reason, the limit ~ ~ . . . .  A= 10-r 
very large is not discussed in this paper. 

The effects of inertia (A > 0) on the present system are 4 ~ ' -  . . . . .  ,,~._ "N~__ Numerical rlleub 
illustrated in Figures 9 and 10. Figure 9 presents the heat f , . . , . . , . r  -- .~. , , . ,  \ 11 
transfer as a function o f t / fo r  R = 104, Da = 10 -3, and x = 1 . . " ' -  " " . \ ~  1.o • 
The limit r/-~ 0 corresponds to a solid slab, for which Nu = 1, s ~ " \ . \  [ 0.9 I • [ 
while r / ~  1 corresponds to a single layer of porous m e d i u m . 1 0 [ [  ~ ~ :  - -  Nu a ~ i - - - - ' "  i - -  - -- ~ i ~ ~  . . . . . . .  

[ I 0.5 I o I _ _  =rlnkmlln'll law . , ~ + ~  1 

NU 2.0 o 0 . * . i . * . I , I * I , I , I 
i ~. I10.0 I e ] . ,1~1t- f~. . . . . . . . -~ t ~ -  0 o 200 400 600 800 (D 100° 120° 140° 160° 180° 

Figure 11 Effect of  inc l inat ion angle and inertia on the Nusselt 
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12 

of the porous layer is made larger. The heat transfer as a 
function of R is illustrated in Figure 10 for r /=  0.9, Da = 10-3, 
and K = 1. In the absence of inertia forces (A = 0), both Figures 
9 and 10 indicate that the Brinkman's law predicted by the 
present analytical solution is in good agreement with the 
numerical results. In fact, apart from the case with A = 10-1, 
the inertia effects are seen to be almost negligible for the 
composite system considered here. 

Figure 11 illustrates the effect of the inclination • on Nusselt 
number for R = 10 a, Da = 10 -2, and various values of the 
porous-layer thickness r/. The solid lines represent the analytical 
solution predicted on the basis of the Brinkman-extended 
Darcy's law, i.e., in the absence of inertial effects (A = 0). The 
numerical results, obtained when A = 10 - t  (i.e., when the 
inertial effects are relatively important), are presented in Figure 
11 as dashed lines. As expected, for a given orientation (I), the 
inertial effects are maximum when t /=  1.0, i.e, when the 
thickness of the porous layer is maximum. As the value of r/is 
decreased the convective motion within the system is pro- 
gressively inhibited and the inertial effects become relatively 
less important. Thus, Figure 11 indicates that inertia becomes 
almost negligible when t / <  0.7, and consequently the present 
analytical solution, based on the Brinkman-extended Darcy's 
law, predicts correctly the heat transfer. 

Nlmtell¢lll mllultl 

10 A Anldytlc4d solution 1 
/., 

0 • _ _  Brlnkman'8 law /.~ 
8 10-3 ~ ~.1  

8 ,  
Nu 10-2 A #J~F// 

S 
10 -I 0 =J'/.'~ 

, 

2 

0 ~ I , I * I * I , 
0 0.2 0.4 0.6 0.8 

Figure 9 Heat transfer th rough a vert ical porous layer of .extension 
P/bordered by a sol id slab: ef fect  o f  inertia, R = 104 and Da = 10 3 
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C o n c l u s i o n s  R e f e r e n c e s  

The solution of the natural-convection heat transfer in an 
inclined porous layer boarded by a wall of finite thickness is 
derived. In a parametric study, the dependence of the Nusselt 
number  on the governing parameters R, Da, O, A, r/, and ~c is 
investigated. The following conclusions can be made. 

Sing le  layer o f  porous med ium (tl = 1 ) 

(1) The effects of the no-slip boundary  condit ion have been 
studied both theoretically and numerically using the 
Brinkman-extended Darcy model. The boundary  effects are 
found to slow down the buoyancy-induced flow with a 
resulting decrease in heat transfer. This trend is made larger 
as the permeability of the porous medium is enhanced. The 
present analytical solution reduces to the regular Darcy's 
law in the limit of low porosity. A good agreement is found 
between the analytical predictions and a numerical simula- 
tion of the same phenomenon conducted for a wide range 
of the governing parameters. 

(2) The effects of the inertia have been studied numerically 
using the Brinkman-Forschheimer-extended Darcy model. 
In general, the inclusion of the Forschheimer term (A) in 
the momentum equation leads to a reduction of the heat 
transfer rate. However, the boundary  effects (Da) are, in 
general, the most significant. 

(3) The orientation angle • is found to have a dominant  effect 
on the heat transfer rate. The peak in Nu  occurs at about  
600 for Darcy's law, but  it is at about  50 ° for the Brinkman- 
extended Darcy's model. With the Darcy -Br inkman-  
Forschheimer model, the peak in Nu  shifts from about  40 ° 
to 60 ° as A is increased from 10 -3 to 10 -1. 

Porous layer boarded by  a so l id  slab 

The heat transfer through a porous layer of extension r/, 
boarded by a solid wall of thickness (1 - r / ) ,  has been also 
considered. In the absence of inertia effects (A), the analytical 
solution was found to be in good agreement with the numerical 
results. It was found that the heat transfer increases con- 
siderably with an increase of the conductivity ratio K. The 
inertia effects in such a system were found to be relatively weak, 
especially when ~/< 0.8. For  a given orientation O, the inertial 
effects become progressively negligible as the relative thickness 
r /of  the porous layer is made smaller than approximately 0.7. 

A c k n o w l e d g m e n t s  

This work was supported in part by the Natural  Sciences and 
Engineering Research Council  of Canada  and jointly by the 
FCAR Government  of Quebec. 

Bejan, A. 1983. The boundary layer regime in a porous layer with 
uniform heat flux from the side. Int. J. Heat Mass Transfer, 26, 
1339-1346 

Beckerman, C., Viskanta, R., and Ramadhyani, A. 1986. Numerical 
study of non-Darcian natural convection in a vertical enclosure filled 
with a porous medium. Numer. Heat Transfer, 10, 557-570 

Bories, S. A. and Combarnous, M. A. 1973. Natural convection in a 
sloping porous layer. J. Fluid Mech., 57, 63-79 

Chan, B. K. C., Ivey, C. M., and Barry, J. M. 1970. Natural convection 
in enclosed porous media with rectangular boundaries. J. Heat 
Transfer, 2, 21-27 

Cheng, P. 1978. Heat transfer in geothermal systems. Adv. Heat 
Transfer, 14, 1-105 

Combarnous, M. and Bories, S. 1975. Hydrothermal convection in 
saturated porous media. Adv. Hydrosci., 10, 231-307 

Cormack, D. E., Leal, L. G., and Inberger, J. 1974. Natural convection 
in a shallow cavity with differentially heated end walls. Part 1, 
Asymptotic theory. J. Fluid Mech., 65, 209-230 

Forschheimer, P. 1901. Wasserbewegung durch Boden. ForschHft. Ver 
Dr. Ing., 45, 1782-1788 

Klarsfeld, S. 1970. Champs de temperature associ6s aux mouvements 
de convection natureile dans un milieu poreux limit& Rev. Gbn. 
Therm., 9, 1403-1423 

Lauriat, G. and Prasad, V. 1987. Natural convection in a vertical 
porous cavity--A numerical study for Brinkman-extended Darcy 
formulation. J. Heat Transfer, 109, 681-696 

Lauriat, G. and Prasad, V. 1989. Non-Darcian effects on natural 
convection in a vertical porous enclosure. Int. J. Heat Mass Transfer, 
32, 2135-2148 

Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. Hemi- 
sphere/McGraw-Hill, Washington, DC 

Poulikakos, D. 1985. A departure from the Darcy model in boundary 
layer natural convection in vertical porous layer with uniform heat 
flux from the side. J. Heat Transfer, 107, 716-720 

Poulikakos, D. and Bejan, A. 1985. The departure from Darcy flow in 
natural convection in a vertical porous layer. Phys. Fluids, 28, 
3477-3484 

Seki, N., Fukusako, S., and Inaba, H. 1978. Heat transfer in a confined 
rectangular cavity packed with porous media. Int. J. Heat Mass 
Transfer, 21, 985-989 

Sen, A. K. 1987. Natural convection in a shallow porous cavity--The 
Brinkman model. Int. J. Heat Mass Transfer, 30, 855-868 

Tong, T. W. and Subramanian, E. 1985. A boundary layer analysis for 
natural convection in vertical porous enclosure--Use of the Brink- 
man-extended Darcy model. Int. J. Heat Mass Transfer, 28, 563-571 

Vasseur, P. and Robillard, L. 1987a. The Brinkman model for boundary 
layer regime in a rectangular cavity with uniform heat flux from the 
side. Int. J. Heat Mass Transfer, 30, 717-727 

Vasseur, P., Satish, M. G., and Robillard, L. 1987b. Natural convection 
in a thin, inclined porous layer exposed to a constant heat flux. Int. 
J. Heat Mass Transfer, 30, 537-549 

Vasseur, P., Wang, C. H., and Sen, M. 1989a. The Brinkman model 
for convection in a shallow porous cavity with uniform heat flux. 
Numer. Heat Transfer, 15, 221-242 

Vasseur, P., Wang, C. H., and Sen, M. 1989b. Thermal instability and 
natural convection in a fluid layer over a porous substrate. Wiirme- 
und-Stoff iibertragrung, 24, 337-347 

Walker, K. L. and Homsy, M. G. 1978. Convection in a porous cavity. 
J. Fluid Mech., 87, 449474 

Weber, J. E. 1975. The boundary layer regime for convection in a 
vertical porous layer. Int. J. Heat Mass Transfer, 18, 569-573 

Int. J. Heat and Fluid Flow, Vol. 14, No. 3, September 1993 291 


